Thermal performance analysis of intermediate fluid vaporizer for liquefied natural gas
نویسندگان
چکیده
The intermediate fluid vaporizer (IFV) is a new kind of vaporizer for liquefied natural gas (LNG). A thermal model was established based on the energy balance among the three typical parts of IFV, namely, evaporator, condenser and thermolator, whose mutual coupling and constraints were fully considered. Calculation codes were developed to solve the energy balance equations, in which the formulation of experimental correlations and thermal property codes were incorporated into the iteration. The temperature, pressure and mass flow rate of the inlet LNG and seawater, as well as the heat transfer area of the three parts, were known parameters. The outlet temperature of natural gas (NG) and seawater, the surface and total heat transfer coefficients in the three parts, and the propane saturation temperature were the solution parameters. The effects of the temperature and mass flow of inlet seawater, the pressure, and mass flow rate of inlet LNG on the solution parameters were systematically investigated. The intrinsic link, in terms of the heat transfer performance inside the IFV, was revealed. The outlet temperature of seawater and NG increased with increased temperature and mass flow rate of the inlet seawater and with reduced inlet mass flow rate of LNG. The increased inlet pressure of LNG significantly improved the NG outlet temperature, but this increment has mild influence on the outlet temperature of seawater. The propane saturation temperature also increased with increased temperature and mass flow rate of inlet seawater and with reduced inlet LNG mass flow rate, whereas, it was not sensitive to the inlet LNG pressure. 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
Thermodynamic Analysis of New Cogeneration Cycle Based on Gaynarje Hotspring
Gaynarje spring is one of the hottest springs in the world and is located around Meshginshahr in northwestern Iran. Because of the water with a temperature of 82 ºC, it is not appropriate to use this mineral water for swimming and bathing. In this study, in addition to lowering the water temperature to the appropriate swimming temperature (29 ºC), the hot water is used for power and natural gas...
متن کاملOptimal Synthesis of Cascade Refrigeration in Liquefied Natural Gas Cycles by Pinch-Exergy
Iran’s vast common natural gas resources and the necessity to extract and export it as Liquefied Natural Gas (LNG) to distances more than 3000Km opens a lucrative field for researchers to optimize LNG cycles. In this article heat integration in cryogenic cycles by determining interacycle partition temperature and optimizing refrigeration features like Subcooler, Presaturator, aftercooler, reboi...
متن کاملMulti objective optimization of the vibration analysis of composite natural gas pipelines in nonlinear thermal and humidity environment under non-uniform magnetic field
The fluid-conveying pipe is a fundamental dynamical problem in the field of fluid– structure interactions. In recent years considerable attention has been given to the lateral vibrations of pipes containing by a moving fluid. In this paper, the vibration analysis of composite natural gas pipeline in the thermal and humidity environment is studied. The effect of the non-uniform magnetic field is...
متن کاملA comparative study of sloshing in liquefied natural gas (LNG) carriers according the classification codes
This paper assesses the design guidelines of different classification codes for the liquefied natural gas carriers considering the effect of liquid sloshing. With regard the increasing importance of LNG carriers in today’s marine transportation, and also considering that the marine accidents involve significant loss, classification societies by regulating national and international standards ai...
متن کامل